

·				 	
Reg. No.		Ĭ			
The state of the state of					

V Semester B.Sc. Degree Examination, March - 2021 CHEMISTRY

Physical Chemistry

(CBCS - 2020 - 21 Onwards)

Paper: VI

Time: 3 Hours

Maximum Marks: 70

Instruction to Candidates:

- 1) The question paper has two parts. Answer both the parts.
- 2) Draw diagrams and chemical equations wherever necessary.

PART-A

Answer any Eight of the following questions. Each question carries Two marks. (8×2=16)

- 1. Give any two limitations of standard hydrogen electrode.
- 2. What is salt bridge? Mention its importance
- 3. The limiting ionic conductance for Na⁺ ion is 4.929×10⁻³ s m² mol⁻¹. Calculate the ionic mobility of Na⁺ ion. (F=96500C).
- **4.** What are concentration cells?
- 5. What are the advantages of potentiometric Titration?
- 6. What is half-wave potential? Mention its significance.
- 7. Calculate the number of vibrational degrees of freedom for a water molecule.
- **8.** Carbon monoxide is microwave active but oxygen molecule is microwave inactive. Give reason.
- 9. Write claussius Mossotti equation and indicate the terms involved in it.
- 10. Why excess of hydrochloric acid is added prior to H₂S gas during the detection of second group basic radicals in the inorganic qualitative analysis?
- 11. Explain the term piezoelectricity.
- 12. What is cyclic voltammogram?

PART-B

Answer any Nine of the following questions. Each question carries Six marks. $(9 \times 6 = 54)$

- 13. a) Explain the method of determination of transport number of H⁺ and Cl⁻ ions in hydrochloric acid by the moving boundary method.
 - b) Define the term molar conductance.

(4+2)

- 14. a) How is emf of a cell experimentally determined by Poggendorff's compensation method?
 - b) The standard electrode potentials of zine and copper electrodes in their salt solutions are -0.76v and +0.34v respectively. Calculate emf of the Daniel cell.

(4+2)

- 15. a) Derive Nernst equation for single electrode potential, thermodynamically.
 - b) Mention two limitations of Arrhenins theory of electrolytic dissociation.

(4+2)

- 16. a) With a neat labelled diagram, explain construction and working of calomel electrode.
 - b) Define the term, standard pertrode potential.

(4+2)

- 17. a) State Kohlransch's law. Calculate λ_{∞} for NV₄OH, if the molar conductances for Nacl, NH₄Cl and NaOH at infinite dilution are 12.6×10⁻³, 15.0×10⁻³ and 24.82×10⁻³ sm² mol⁻¹ respectively.
 - b) How do you set up a quinhydrone electrode? Represent it symbolically.

(4+2)

- 18. a) Explain acid-base theory of indicators by taking phenolphthalein as an example.
 - b) Define: dipole moment. Mention its SI unit.

(4+2)

- 19. a) Derive Henderson's equation for calculation of pH of an acid buffer.
 - b) What is Thomson effect?

(4+2)

- 20. a) Derive the relationship between internuclear distance and moment of inertia for a rigid rotor diatomic molecule.
 - b) State Born Oppenheimer approximation.

(4+2)

- 21. a) Explain Raman Scattering and differentiate between stoke's and antistokes lines.
 - b) What are the selection rules for molecular transition between rotational and vibrational levels.

(4+2)

- 22. a) Calculate the Force constant and zero point energy for carbon monoxide if $\overline{\omega}_{osc} = 219 \, m^{-1}$. Given: h=6.627×10⁻³⁴Js, C=3×10⁸m/s and $\mu = 11.39 \times 10^{-28} \, kg$.
 - b) Mention any two advantages of Raman Spectra over IR spectra.

(4+2)

- 23. a) Differentiate between paramagnetic and Ferromagnetic substances. Give one example for each type.
 - b) What is Seebeck effect?

(4+2)

- 24. a) Draw the current potential curve for an electrochemical reaction taking place at dropping mercury electrode and explain the different types of currents.
 - b) Write Ilkovic equation and indicate the terms.

(4+2)

- 25. a) Name the different types of molecular appetra and mention the region of electromagnetic spectrum in which they appear.
 - b) Explain why only two absorption bands are observed in IR spectrum of Co₂ instead of Four.

(4+2)

BMSCWLIBRARY